Study of planar defect filtering in InP grown on Si by epitaxial lateral overgrowth
نویسندگان
چکیده
InP thin films have been grown on InP/Si substrate by epitaxial lateral overgrowth (ELOG). The nature, origin and filtering of extended defects in ELOG layers grown from single and double openings in SiO2 mask have been investigated. Whereas ELOG layers grown from double openings occasionally exhibit threading dislocations (TDs) at certain points of coalescence, TDs are completely absent in ELOG from single openings. Furthermore, stacking faults (SFs) observed in ELOG layers grown from both opening types originate not from coalescence, but possibly from formation during early stages of ELOG or simply propagate from the seed layer through the mask openings. A model describing their propagation is devised and applied to the existent conditions, showing that SFs can effectively be filtered under certain conditions. ELOG layers grown from identical patterns on InP substrate contained no defects, indicating that the defect-forming mechanism is in any case not inherent to ELOG itself. © 2013 Optical Society of America OCIS codes: (130.3130) Integrated optics materials, (130.5990) Semiconductors, (160.4670) Optical materials, (310.1860) Deposition and fabrication, (250.1500) Cathodoluminescence. References and links 1. B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008). 2. R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc. 159(3), H260–H265 (2012). 3. Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology 22(26), 265301 (2011). 4. M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectivelygrown InGaAs micro-discs on Si,” J. Cryst. Growth 352(1), 229–234 (2012). 5. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011). 6. J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21(5), 28–33 (2010). 7. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012). 8. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep 2, 349 (2012). 9. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472 (1992). 10. S. Mahajan, “Defects in semiconductors and their effects,” Acta Mater. 48(1), 137–149 (2000). 11. A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth 124(1-4), 207–212 (1992). 12. Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth 174(1-4), 630–634 (1997). #197451 $15.00 USD Received 12 Sep 2013; revised 11 Oct 2013; accepted 13 Oct 2013; published 25 Oct 2013 (C) 2013 OSA 1 November 2013 | Vol. 3, No. 11 | DOI:10.1364/OME.3.001960 | OPTICAL MATERIALS EXPRESS 1960 13. T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett. 88(14), 141909 (2006). 14. C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012). 15. D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys. 61(5), 1856 (1987). 16. F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys. 64(9), 4526–4530 (1988). 17. Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett. 68(1), 111 (1996). 18. J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett. 81(11), 1996–1998 (2002). 19. F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nanoopenings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys. 104(9), 093112 (2008). 20. A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 111 InP,” J. Appl. Phys. 58(11), 4383 (1985). 21. I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett. 58(1), 48 (1991). 22. H. Suzuki, “Chemical interaction of solute atoms with dislocations,” Sci. Rep. Res. Inst. Tohoku Univ. [Med] A4, 455–463 (1952). 23. D. B. Holt, “Transmission electron microscope observations on gap electroluminescent diode materials,” J. Mater. Sci. 7(3), 265–278 (1972). 24. M. S. Abrahams, “Mechanism of thermal annihilation of stacking faults in Gaas,” J. Appl. Phys. 41(6), 2358 (1970). 25. C. Junesand, M.-H. Gau, Y.-T. Sun, S. Loududoss, I. Lo, J. Jimenez, P. A. Postigo, F. M. M. Sánchez, J. Hernandez, S. Molina, A. Abdessamad, G. Pozina, L. Hultman, and P. Pirouz, “Defect reduction in heteroepitaxial InP on Si by epitaxial lateral overgrowth,” Manuscript, submitted to Materials Express (2013). 26. R. S. Barnes, “The climb of edge dislocations in face-centred cubic crystals,” Acta Metall. 2(3), 380–385 (1954). 27. A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011). 28. Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B 177(17), 1551–1557 (2012). 29. L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B 13(4), 1694 (1995). 30. T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy 81(3-4), 279–288 (2000). 31. K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys. 29(Part 2, No. 4), L540–L543 (1990).
منابع مشابه
High Quality III-V Semiconductors/Si Heterostructures for Photonic Integration and Photovoltaic Applications
High Quality III-V Semiconductors/Si Heterostructures for Photonic Integration and Photovoltaic Applications Himanshu Kataria TRITA-ICT/MAP AVH Report 2014:13; ISSN 1653-7610; ISRN KTH/ICT-MAP/AVH-2014:13-SE ISBN 978-91-7595-289-5 Abstract This thesis deals with one of the promising strategies to monolithically integrate III-V semiconductors with silicon via epitaxial lateral overgrowth (ELOG) ...
متن کاملEpitaxial lateral overgrowth of GaN over AlOx surface formed on Si substrate
An approach by which single crystal a-GaN can be grown laterally over oxidized AlAs (AlOx) formed on Si substrates is demonstrated. Regular a-Ga2-O3 stripe templates, spatially separated by AlOx , on which subsequent GaN growth is selectively seeded are formed. Since the boundary between the stripe template and AlOx is nominally planar, two pyramidal planes on separated GaN can merge by growing...
متن کاملLarge-Area Direct Hetero-Epitaxial Growth of 1550-nm InGaAsP Multi-Quantum-Well Structures on Patterned Exact-Oriented (001) Silicon Substrates by Metal Organic Chemical Vapor Deposition
We employ a simple two-step growth technique to grow large-area 1550-nm laser structures by direct hetero-epitaxy of III–V compounds on patterned exact-oriented (001) silicon (Si) substrates by metal organic chemical vapor deposition. Densely-packed, highly uniform, flat and millimeter-long indium phosphide (InP) nanowires were grown from Si v-grooves separated by silicon dioxide (SiO2) stripes...
متن کاملStrain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition
We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-groo...
متن کاملEpitaxial Lateral Overgrowth - a Tool for Dislocation Blockade in Multilayer Systems
Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case of GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily d...
متن کامل